Remédiation

Les figures semblables - Recherche de longueurs

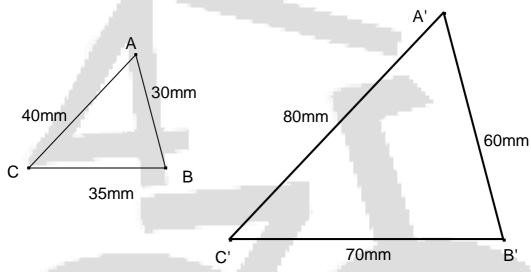
1) Rappel

Si deux triangles (ABC et A'B'C') sont semblables, alors leurs côtés homologues ont des longueurs proportionnelles.

$$\frac{|A'B'|}{|AB|} = \frac{|A'C'|}{|AC|} = \frac{|B'C'|}{|BC|} = r$$

Le rapport de proportionnalité (r), est aussi appelé rapport de similitude. Il s'obtient donc en divisant les longueurs de 2 segments homologues.

Exemple



2) Utilisation du tableau de proportionnalité

On peut présenter les valeurs de l'exemple ci-dessus dans un tableau de proportionnalité.

	Côté 1	Côté 2	Côté 3		r = 2
△ ABC	30	35	40	.2	1
△ A'B'C'					2

Le rapport de proportionnalité (ou de similitude) apparaît clairement dans ce tableau. Il permet de trouver facilement la longueur d'un côté du 2^e triangle. En effet, il suffit de multiplier la longueur du côté homologue du 1^e triangle par le rapport (2).

Exercices - tableau de proportionnalité

a. Le rapport et la longueur des côtés du 1^e triangle sont connus.

				<u> </u>
	Côté 1	Côté 2	Côté 3	r = 4
△ 1	10	12	15	. 4 🔲 1
△ 2				4
	Côté 1	Côté 2	Côté 3	r = 1/3
△ 1	1, 15	21	30	. 1/3 3
△ 2				1
	Côté 1	Côté 2	Côté 3	r = 3/2
△ 1	10	12	16	. 3/2 2
△ 2				3

b. La longueur des côtés du 1^e triangle et la longueur d'un côté du 2^e triangle sont connues. Détermine d'abord le rapport de similitude en complétant la colonne de droite puis détermine les longueurs inconnues.

	Côté 1	Côté 2	Côté 3		r=
△ 1	90	75	60		
△ 2	18				
	Côté 1	Côté 2	Côté 3		r =
△ 1	20	15	10		
△ 2			30	F	
	Côté 1	Côté 2	Côté 3		r=
△ 1	60	45	50		
△ 2			20		

c. La longueur des côtés du 2^e triangle et la longueur d'un côté du 1^e triangle sont connues. Détermine d'abord le rapport de similitude en complétant la colonne de droite puis détermine les longueurs inconnues.

△ 1	25				
△ 2	50	46	62		
	Côté 1	Côté 2	Côté 3		r
△ 1			14	,	
Δ2	15	18	21		

Côté 1 Côté 2 Côté 3

Difficultés liées au tableau de proportionnalité

a) Le rapport n'est pas un nombre naturel (2, 3, ...), ni une fraction unitaire (1/2, 1/3, ...).

	Côté 1	Côté 2	Côté 3
△ 1	25	18	30
△ 2			20

r =

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\frac{2}{3}$.

Calculer les $\frac{2}{3}$ de 18 est relativement facile :

Pour calculer les $\frac{2}{3}$ de 25, il est préférable d'utiliser les fractions. En effet,

$$\frac{2}{3}$$
 de 25 = $\frac{2}{3}$. 25 = ----

Complète le tableau en utilisant éventuellement des fractions.

	Côté 1	Côté 2	Côté 3
△ 1	36	30	25
△ 2			20

r	=

Détaille tes calculs.

b) Les longueurs sont exprimées par des fractions.

	Côté 1	Côté 2	Côté 3
△ 1	3/4	14/15	1/2
△ 2		2/3	

r=
1

Il ne faut pas craindre de travailler avec les fractions.

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\frac{2}{3}$: $\frac{14}{15} = \cdots$. \longrightarrow = \cdots

Calcul des longueurs inconnues :

Complète le tableau en utilisant des fractions.

	Côté 1	Côté 2	Côté 3
△ 1	4	5/2	7/3
△ 2			5/6

r =
1

Détaille tes calculs.

3

c) Les longueurs sont exprimées par des nombres décimaux.

	Côté 1	Côté 2	Côté 3
△ 1	3,3	1,8	2,4
△ 2	- 40		3,6

	r =
Ī	1
Ī	

Il faut utiliser ta calculatrice pour déterminer le rapport et les longueurs inconnues.

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est : =

Calcul des longueurs inconnues :

d) Les longueurs sont exprimées par des racines carrées.

	Côté 1	Côté 2	Côté 3
△ 1	$6\sqrt{2}$	6	$2\sqrt{3}$
△ 2			$\sqrt{2}$

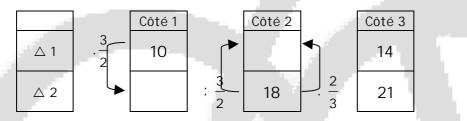
r =
1

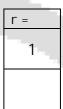
Il faut utiliser les règles de calcul relatives aux racines carrées.

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\frac{\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{2} \cdot \sqrt{3}}{2 \cdot \sqrt{3} \cdot \sqrt{3}} = \frac{\sqrt{6}}{6}$

Calcul des longueurs inconnues :

e) Confusion entre le rapport de similitude et son inverse





Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\frac{3}{2}$.

Pour déterminer le *Côté 1* du *Triangle 2*, j'effectue 10 . $\frac{3}{2}$ = 15

Pour déterminer le *Côté 2* du *Triangle 1*, j'effectue $18: \frac{3}{2} = 18 \cdot \frac{2}{3} = 12$

3) Utilisation des équations

Tu peux également déterminer les longueurs inconnues en résolvant des équations.

	Côté 1	Côté 2	Côté 3
△ 1	60	45	50
△ 2	Х	у	20

Le tableau ci-dessus peut se traduire par l'égalité $\frac{x}{60} = \frac{y}{45} = \frac{20}{50} = r$

$$\frac{x}{60} = \frac{y}{45} = \frac{20}{50} = 1$$

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est évidemment $\frac{2}{5}$.

Pour trouver x, tu dois résoudre l'équation: Pour trouver y, tu dois résoudre l'équation:

$$\frac{x}{60} = \frac{2}{5}$$

Neutraliser le facteur diviseur gêneur

 $x = \frac{3}{3}$

Simplifier (calculer) la fraction

 $x = \frac{3}{3}$

$$\frac{y}{45} = \frac{2}{5}$$

Exercices - équations

En utilisant les équations, détermine les grandeurs inconnues.

	Côté 1	Côté 2	Côté 3
△ 1	8	9	10
△ 2	Х	у	6

r =	

Le tableau ci-dessus peut se traduire par l'égalité —

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est

Recherche de x

Recherche de y

Difficulté liée à la résolution des équations

L'inconnue se trouve parfois au dénominateur

	Côté 1	Côté 2	Côté 3
△ 1	8	У	14
△ 2	Х	6	10

r =

Le tableau ci-dessus peut se traduire par l' égalité $\frac{x}{8} = \frac{6}{v} = \frac{10}{14} = r$

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\frac{5}{7}$.

La recherche de x ne pose aucun problème; il suffit de résoudre l'équation : $\frac{x}{8} = \frac{5}{7}$.

Par contre, la recherche de y peut poser problème à certains élèves. En effet, tu dois résoudre :

$$\frac{6}{y} = \frac{5}{7}$$

Utilisation de la règle :

le produit des extrêmes est égal au produit des moyens

Neutralisation du facteur multiplicateur gêneur

$$y = \frac{42}{5}$$

Exercices

En utilisant les équations, détermine le rapport de similitude et les grandeurs inconnues.

	Côté 1	Côté 2	Côté 3
△ 1	Х	14	10
△ 2	16	21	У

	r =
ĺ	

Le tableau ci-dessus peut se traduire par l' égalité — = — = — = — = —

Le rapport de similitude entre les 2 triangles (\triangle 1 et \triangle 2) est $\stackrel{\dots}{\longrightarrow}$

Recherche de x

Recherche de y

Actimath 3 - Chapitre 8 - Activité 6 pages 102

Actimath 3 - Chapitre 8 - Exercices complémentaires C pages 109 et 110